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ABSTRACT

A simple first-principles model of counter-current heat-recirculating combustors is

developed, including the effects of heat transfer from the product gas stream to the reactant

stream, heat loss to ambient and heat conduction in the streamwise direction through the dividing

wall (and heat transfer surface) between the reactant and product streams.  It is shown that

streamwise conduction through wall has a major effect on the operating limits of the combustor,

especially at small dimensionless mass fluxes (M ) or Reynolds numbers that would be

characteristic of microscale devices.  In particular, if this conduction is neglected, there is no

small-M  extinction limit because smaller M  leads to larger heat recirculation and longer

residence times that overcome heat loss if M is sufficiently small.  In contrast, even a small effect

of conduction along this surface leads to significantly higher minimum M.  Comparison is made

with an alternative configuration of a flame stabilized at the exit of a tube, where heat

recirculation occurs via conduction through tube wall; it is found that the counter-current

exchanger configuration provides superior performance under similar operating conditions.

Implications for microscale combustion are discussed.
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Introduction

Recently interest in heat-recirculating “excess enthalpy” burners, first studied over 30

years ago [1, 2], has been renewed due to efforts in microscale combustion and power generation

[3, 4, 5, 6].  Such work is motivated by the fact that hydrocarbon fuels contain 100 times more

energy per unit mass than lithium-ion batteries, thus devices converting of fuel to electricity at

better than 1% efficiency represent improvements in portable electronic devices and other

battery-powered equipment.  At small scales, however, heat and friction losses become more

significant, thus devices based on existing macroscale designs such as internal combustion

engines may be impractical.  Consequently, many groups have considered heat recirculation

using a counter-current heat exchanger for thermal management.  By transferring thermal energy

from the combustion products to the reactants without mass transfer (thus dilution of reactants),

the total reactant enthalpy (sum of thermal and chemical enthalpy) is higher than in the incoming

cold reactants and therefore can sustain combustion under conditions (lean mixtures, small

heating value fuels, large heat losses, etc.) that would lead to extinguishment of the flame

without recirculation.

Apparently there has been only one modeling study of extinction limits and limit

mechanisms in heat-recirculating burners.  In 1978 Jones et al. [7] performed a global energy

balance on the reactant and product streams in heat-recirculating combustors using empirically

specified minimum reaction temperatures and prescribed heat losses.  Despite its simplicity, two

extinction limits were predicted, a blow-off type limit at large dimensionless mass flux (M) or

Reynolds number (Re) and another limit at small M due to heat losses.  For high-M limit, the

minimum fuel concentration supporting combustion increases with increasing M because as M

increases, the residence time decreases, thus a higher reaction rate and consequently higher

reaction temperature and therefore a higher fuel concentration is required to sustain combustion.

For the low-M limit the minimum fuel concentration increases with decreasing M because the

heat loss rate was assumed fixed; the extinction limit criterion of a minimum reaction

temperature corresponds essentially to a fixed ratio of heat loss rate to heat generation rate, thus

as the mass flow rate decreases a higher mass fraction of fuel is needed to produce the minimum

required heat generation rate to avoid extinction.  These predictions are qualitatively similar to

those seen in heat recirculating combustor experiments [1-3].  Moreover, dual-limit behavior (i.e.
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a high-velocity and a low-velocity limit for fixed fuel concentration) is characteristic of many

combustion systems [8].

While instructive, the Jones et al. model [7] is not entirely predictive because an

empirical quantity is required, specifically the minimum reactor temperature supporting

combustion, plus the rate of heat loss (not just a heat loss coefficient) must be prescribed.

Perhaps more importantly, we will show that small-M extinction limits (which are most relevant

to microscale applications) requires a process besides heat losses, such as heat conduction along

the dividing wall between reactant and product streams.  Low-M limits were predicted in [7]

because heat losses to ambient were prescribed independent of M, whereas for realistic heat

transfer models, these losses will decrease with decreasing M as discussed later.  With realistic

heat recirculation and heat loss models, at low M the recirculation and loss track each other, thus

no low-M extinction limit is predicted unless an additional is present.

Consequently, this work aims to develop the simplest possible first-principles model (not

requiring specification of an empirical minimum reaction temperature or a prescribed heat loss)

of heat transfer, finite-rate exothermic chemical reaction, streamwise wall thermal conduction

and heat loss in a counter-current heat exchanger/combustor and describe the resulting extinction

mechanisms.  Comparison is made with an alternative configuration also reported in the

literature [9, 10], namely that of a flame stabilized at the exit of a tube, where heat recirculation

occurs via conduction through tube wall rather than in a counter-current heat exchanger.

Counter-current heat exchanger/combustor

Approach

We consider a linear counter-current heat exchanger (Fig. 1) with intake (for premixed

reactants) and exhaust (for combustion products) ports at one end (x = 0).  At the opposite end (x

= L) a well-stirred reactor (WSR) is stationed between the reactant (low-temperature) and

product (high-temperature) sides of the exchanger.  A thermally conductive dividing wall

separates the two sides of the exchanger.  The current analysis could be extended to a concentric

tube counter-current heat exchanger, which has also been considered for both macroscale [1] and

microscale [10] heat-recirculating combustors, if separate values of h1 are chosen for the outer
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annual reactant stream and the inner tubular product stream and (because of the axis of

symmetry) heat loss from the product stream is set to zero.  The use of a WSR combustion model

is not arbitrary; initial experimental and numerical results [3] show that near extinction limits,

reaction zone structures in such burners are very different from propagating premixed flames;

instead, there are much larger (compared to propagating flames) reaction zones, smaller

temperature gradients, lower peak temperatures, longer residence times at high temperature, and

no visible flame emission.  These characteristics are typical of “flameless” or “mild" combustion

observed in burners employing highly preheated air [11, 12, 13].  The WSR model represents a

limit of mild combustion where heat and mass diffusion effects are negligible (in the sense that

they are so rapid that temperature and composition gradients within the reactor cannot be

sustained) and transport is limited entirely by convection.

With the WSR model, “blow-off” extinction limits occur at large M where residence

times in the WSR are insufficient compared to chemical reaction times.  We will show that limits

also exist at small M in non-adiabatic heat-recirculating burners with wall conduction in the

streamwise direction.  This is because as M decreases, the fraction of heat release transferred

away from the WSR due to conduction along the wall (and subsequently transferred to the gas

streams, then lost to ambient) increases.  This causes the WSR temperature to decrease, and

because reaction time increases exponentially with decreasing temperature, at sufficiently small

M the reaction time becomes larger than the residence time – even though residence times and

heat recirculation gains in enthalpy both increase as M decreases.  Without wall conduction,

this low-M  extinction limit mechanism is absent.  The effect of wall conduction on heat

exchanger performance has been studied previously in the context of cryogenic systems [14, 15]

and microscale heat exchangers [16, 17] but apparently not in the context of non-adiabatic

combustors.

Experimental and numerical results for heat-recirculating burners [3] show that near

extinction limits, the maximum possible heat recirculation (thus maximum excess enthalpy) is

needed to sustain reaction, thus reaction occurs inside the WSR volume as specified here,

whereas farther from limits less recirculation is required, thus reaction may occur upstream or

downstream of the WSR.  Consequently, the model employed here is appropriate near extinction

limits, which is the main interest, but may be inappropriate away from limits.  The operating

regime away from extinction limits, where chemical reaction may occur outside the WSR, could
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be treated as a convective-diffusive system of with reaction in a preheat zone of finite, prescribed

length, in a manner similar to that analyzed by Zel'dovich [18].  In extreme cases of sufficiently

high fuel concentrations and small M, this reaction outside the WSR leads to a “flashback” limit

because a flame can propagate upstream from the reaction zone to the reactant inlet without any

need for heat recirculation.  Such a limit cannot be predicted by the current model since the

reaction is presumed to stay within the WSR.  While this represents another limitation on the

operating conditions of a heat-recirculating burner, it does not affect the extinction limits of

primary interest in this work.

The configuration employed here is inherently two-dimensional because gas-phase heat

conduction is orthogonal to streamwise convection.  A one-dimensional model is obtained by (1)

using constant overall heat transfer coefficients (h1) for heat transfer from reactant and product

streams to the dividing wall, (2) using constant overall heat loss coefficients (h2) for heat losses

from these streams to ambient and (3) modeling the wall as "thermally-thin."  Constant heat

transfer coefficients are not only analytically convenient but realistic for laminar flows in plane

channels, where the Nusselt number based on hydraulic diameter ≡ h1dH/kg ≈ 7.5 [19], and thus

for channels much wider in the spanwise direction than their height d, dH ≈ 2d and consequently

h1 ≈ 3.7 kg/d.  For strongly turbulent flows roughly h ~ 

† 

˙ m 0.8 but for laboratory-scale apparatuses

with d on the order of a few mm and gas velocities of a few hundred cm/s at most, Reynolds

numbers will be at most a few hundred and thus turbulent flow is not expected.  Of course, for

microscale devices laminar flow will be ubiquitous.  The thermally-thin assumption, which is

common in modeling of flame spread over thin solid fuel beds [20], requires that the wall

thermal resistance t/kw, where t is the wall thickness and kw its thermal conductivity, is small

compared to the channel thermal resistance 1/h1 so that temperature drops across the wall are

negligible.  Since Nu ≈ 3.7, h1 ≈ 3.7kg/d, the thermally-thin assumption requires 0.52kwd/kgt >>

1.  For realistic materials kw >> kg and for most practical burners and proposed microscale

devices d/t ≥ 1, thus this assumption is justified.  With the thermally-thin model Tw,e-Tw,i <<

Te-Ti,, where T i(x) is the mean reactant-side gas temperature, Tw,i(x) the corresponding

temperature on the wall surface, and T e(x ) and Tw,e(x) the corresponding product-side

temperatures (Fig. 1).  Moreover, only streamwise wall conduction needs to be calculated, using

the mean wall temperature Tw ≈ (Tw,e+Tw,i)/2.
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For simplicity flow channel entrance effects on h1 are neglected.  For laminar flow in

straight channels the ratio of entrance length Le to dH is approximately 0.04 UdH/n.  This can be

rearranged to read Le/L  ≈ 0.60 M/Pr, where L is the length of the exchanger and M  is the

dimensionless mass flux defined later, and thus for P r  = 0.7, Le/L  ≈ 0.85 M.   For the

representative conditions analyzed in this work, the maximum value of M of interest is about 0.2

thus at most only the first 17% of the exchanger length is influenced by entrance effects (this of

course applies to both the low-temperature and high-temperature arms of the exchanger).  In the

entrance regions h1 will be higher than its value for fully-developed flow and thus the overally

performance of the combustor will be slightly higher than that estimated based on fully

developed flow.  For the low-M  cases of most interest in this study, entrance effects are

negligible.

Many heat-recirculating combustors employ multi-turn spiral exchangers (rather than

linear exchangers as analyzed here) for which heat losses in the direction shown in Fig. 1 are

minimal, but heat losses in the third dimension still exist.   These losses are estimated (for

laminar flows) by H ≡ h2/h1 = d /w , where w  is the channel depth in the third dimension.

Insulation would not change this estimate substantially because insulating materials have thermal

conductivities no lower than air and the insulation thickness in most devices is much less than w.

Furthermore it is assumed, as in [7], that the WSR volume is small compared to the heat

exchanger, thus heat loss from the WSR is neglected.

Analysis

Heat transfer is divided into three zones: the dividing wall, the reactants side of the heat

exchanger and the products side of the heat exchanger.  Energy balances on these three zones

readily yield (see Nomenclature):

† 

kwt
d2Tw

dx 2 - 2h1Tw + h1(Tw,i + Tw,e ) = 0 (1a)

† 

˙ m CP
dTi

dx
- h1(Tw,i - Ti) + h2(Ti - T•) = 0 (2a)
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† 

˙ m CP
dTe

dx
- h1(Te - Tw,e ) - h2(Te - T•) = 0 (3a)

Using the mean wall temperature Tw ≈ (Tw,e + Tw,i)/2, invoking the thermally-thin assumption

Tw,e - Ti,w << Te - Ti, and taking the sum and difference of (2a) and (3a) yield

† 

kwt
h1

d2Tw

dx 2 - 2Tw = -(Ti + Te ) (1b)

† 

˙ m CP
d
dx

Ti - Te( ) + (h1 + h2) Ti + Te( ) - 2h2T• - 2h1Tw = 0 (2b)

† 

˙ m CP
d
dx

Ti + Te( ) + (h1 + h2) Ti - Te( ) = 0 (3b)

The previous model by Jones et al. [7] is similar to Eqs. (2b) and (3b) applied globally rather

than on an element of the heat exchanger of infinitesimal length.

Combining (1b), (2b) and (3b) yields

† 

M 2

BH(1+ H)
d4 ˜ T w
d˜ x 4

-
M 2

H(1+ H)
+

1+ H
BH

È 

Î 
Í 

˘ 

˚ 
˙ 

d2 ˜ T w
d˜ x 2

+ ˜ T w =1 (4)

where

† 

M ≡
˙ m CP

h1L
;B ≡

2h1L
2

kwt
;H ≡

h2

h1

; ˜ x ≡ x
L

; ˜ T ≡ T
T•

Thus, the heat transfer problem has three dimensionless parameters, namely the Biot number (B)

(scaled by L/t since convection occurs along the length of the dividing wall (L) whereas

conduction along the wall occurs through a cross-section of height t), a heat loss coefficient (H)

and the mass flux (M).  Since the heat transfer coefficient h1 is assumed to be the same on both

sides of the dividing wall and the dividing wall is assumed to be thermally thin (negligible

thermal resistance), the overall heat transfer coefficient for the heat exchanger is h1/2, and since

† 

˙ m CP is the same on both sides of the exchanger, 2M = 

† 

˙ m CP/(h1/2)L is equivalent to the Number
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of Transfer Units (NTU) in the heat exchanger literature.  Additionally, 2/MB is equivalent to the

streamwise wall conduction parameter employed by Kroeger [14] and others.

For laminar flow where h1 ≈ 3.7kg/d, M = rgUdCP/(3.7kg/d)L = 0.26(d/L)RePr, where Re

≡ rgUd/mg is the Reynolds number and Pr is the Prandtl number.  For geometrically similar

burners (d/L = constant), small M corresponds to small Re (characteristic of most microscale

devices), thus describing the small-M extinction mechanism is the primary focus of this work.

The solution to (4) is

† 

˜ T w ( ˜ x ) =1+ c1e
a ˜ x + c2e

-a ˜ x + c3e
b ˜ x + c4e

-b ˜ x (5)

where c1 – c4 are unknown constants, a = l1
1/2, b = l2

1/2 and l1 and l2 are the roots of

† 

M 2

BH(1+ H)
l2 -

M 2

H(1+ H)
+

1+ H
BH

È 

Î 
Í 

˘ 

˚ 
˙ l +1= 0 (6).

Two boundary conditions are obtained by assuming the dividing wall is adiabatic (thus has zero

temperature gradient) at both ends.  This is reasonable since the wall cross-sectional areas are

generally small compared to channel cross-sectional areas, plus kw >> kg, thus there would be

little heat transfer out the bare wall ends compared to convective transfer to/from the wall

surfaces.  With this assumption wall conduction is not a heat loss mechanism, instead it only re-

distributes thermal energy within the device; it will be shown this still results in a major impact

on burner performance.  The effect of the wall end boundary conditions is discussed in a later

section.  From (5) this yields

† 

ac1 - ac2 + bc3 - bc4 = 0 (7a)

† 

ac1e
a - ac2e

- a + bc3e
b - bc4e

-b = 0 (7b)

Two boundary conditions are obtained by substituting (5) into (1b) and applying 

† 

˜ T i(0)  = 1

(ambient inlet temperature) yielding



8

† 

a2

B
-2

Ê 

Ë 
Á ˆ 

¯ 
˜ c1 +

a2

B
-2

Ê 

Ë 
Á ˆ 

¯ 
˜ c2 +

b2

B
- 2

Ê 

Ë 
Á ˆ 

¯ 
˜ c3 +

b2

B
- 2

Ê 

Ë 
Á ˆ 

¯ 
˜ c4 = - ˜ T e(0) +1 (7c)

† 

a2

B
-2

Ê 

Ë 
Á ˆ 

¯ 
˜ eac1 +

a2

B
-2

Ê 

Ë 
Á ˆ 

¯ 
˜ e-ac2 +

b2

B
- 2

Ê 

Ë 
Á ˆ 

¯ 
˜ ebc3 +

b2

B
-2

Ê 

Ë 
Á ˆ 

¯ 
˜ e- bc4 = 2 - ˜ T e(1) - ˜ T i(1) (7d)

where the exhaust temperature 

† 

˜ T e(0)  and WSR inlet and outlet temperatures

† 

˜ T i(1)  and 

† 

˜ T e(1)  are

all unknowns.

Two additional equations are obtained by manipulating (2b) and (3b) to isolate 

† 

˜ T i( ˜ x )  and

† 

˜ T e( ˜ x )  as functions of 

† 

˜ T w ( ˜ x )  only and applying the boundary conditions at 

† 

˜ x  = 0 and 

† 

˜ x  = 1.  In

non-dimensional form the equations for 

† 

˜ T i( ˜ x )  and 

† 

˜ T e( ˜ x )  as functions of 

† 

˜ T w ( ˜ x )  only are

† 

M d ˜ T i
d˜ x 

+ (1+ H ) ˜ T i - H = ˜ T w (8),

† 

M d ˜ T e
d˜ x 

- (1+ H ) ˜ T e + H = - ˜ T w (9).

Substituting in 

† 

˜ T w ( ˜ x )  from Eq. (5) and applying the boundary condition 

† 

˜ T i(0)  = 1 to (8), the

solutions to (8) and (9) are

† 

˜ T i( ˜ x ) = -(d1 + d2 + d3 + d4 )e-(1+ H )˜ x / M + d1e
a˜ x + d2e

-a ˜ x + d3e
b˜ x + d4e

-b˜ x +1 (10)

† 

˜ T e( ˜ x ) = ( ˜ T e(0) - (1+ f1 + f2 + f3 + f4))e
(1+ H )˜ x / M

              +1+ f1ea˜ x + f2e-a˜ x + f3eb ˜ x + f4e-b˜ x 
(11)

where

† 

d1 =
c1

aM + (1+ H )
;d2 =

c2

-aM + (1+ H )
;d3 =

c3

bM + (1+ H )
;d4 =

c4

-bM + (1+ H )

† 

f1 =
c1

-aM + (1+ H )
; f2 =

c2

aM + (1+ H )
; f3 =

c3

-bM + (1+ H )
; f4 =

c4

bM + (1+ H )
.

Equations (10) and (11) can then be applied at 

† 

˜ x   = 1 to obtain
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† 

˜ T i(1) = -(d1 + d2 + d3 + d4 )e-(1+ H )/ M + d1e
a + d2e

- a + d3e
b + d4e

-b +1 (12)

† 

˜ T e(1) = ( ˜ T e(0) - (1+ f1 + f2 + f3 + f4))e
-(1+H )/ M + f1e

a + f2e
- a + f3e

b + f4e
-b +1  (13)

where again 

† 

˜ T e(0) , 

† 

˜ T i(1)  and

† 

˜ T e(1)  are all unknowns.

The final relationship needed to close the system of equations is obtained from the WSR

model [21].  For the simplest case of first-order single-step Arrhenius chemical reaction, the

relationship between WSR inlet temperature Ti(1), outlet temperature Te(1) and mass flux is

† 

˙ m 
rgZAR

=
(Ti(1) + DT) - Te(1)

Te (1) -Ti(1)
exp -

E
RTe(1)

Ê 

Ë 
Á ˆ 

¯ 
˜ (14),

where the term Ti(1)+DT is the adiabatic flame temperature based on an inlet temperature (to the

WSR) of Ti(1).  In dimensionless form Eq. (14) becomes

† 

M = Da D ˜ T 
˜ T e(1) - ˜ T i(1)

-1
Ê 

Ë 
Á ˆ 

¯ 
˜ exp -

b
˜ T e(1)

Ê 

Ë 
Á ˆ 

¯ 
˜ ;Da ≡

rgCP ARZ
Lh1

,b ≡
E

RT•

(15).

where Da is the Damköhler number and b the Zeldovich number.  For fixed 

† 

˜ T i(1) , the response

of 

† 

˜ T e(1)  to M produces well-known Z-shaped curves, however, for the current problem 

† 

˜ T e(1)  is

strongly affected by M  due to combined effects of heat recirculation, heat loss and wall

conduction, thus, the relationships between M and 

† 

˜ T e(1)  take many forms.

Equations (7a – 7d, 12, 13 and 15) represent 6 linear and one non-linear equation for

seven unknowns c1-c4, 

† 

˜ T e(0) , 

† 

˜ T i(1)  and 

† 

˜ T e(1) .  These are readily solved for various values of the

dimensionless parameters that completely define the problem, namely the heat transfer

parameters M, B and H and the combustion parameters 

† 

D ˜ T , Da and b.
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Choice of baseline numerical parameters

Baseline dimensionless parameters that semi-quantitatively represent macroscale heat-

recirculating burner experiments should be chosen.  H = 0.05 is employed, corresponding to d =

3.9 mm and w = 78 mm as in our initial experiments [3, 22].  A Zel’dovich number (b) of 70 is

chosen, corresponding to E = 42 kcal/mole (typical of hydrocarbon oxidation [21]).  For

experiments [3] using 3-turn Inconel burners having d ≈ 3.9 mm, t ≈ 0.51 mm, L ≈ 580 mm, kw ≈

11.4 W/mK, thus B ≈ 2900, an extinction limit occurs at 

† 

D ˜ T  ≈ 1.5 for M = 0.2; Da ≈ 107 leads to

extinction at these conditions and is employed in the calculations below.

Results - infinite reaction rates

First, heat transfer characteristics of counter-current heat exchangers are examined for

infinite reaction rate (Da Æ ∞), thus 

† 

˜ T e(1) -

† 

˜ T i(1)  = 

† 

D ˜ T .  Figure 2 (top) shows temperature

profiles for adiabatic (H = 0) and wall-conduction-free (BÆ∞) conditions, for which profiles are

linear.  For all M, the exhaust temperature 

† 

˜ T e(0)  is the adiabatic flame temperature 1+

† 

D ˜ T .  The

WSR temperature 

† 

˜ T e(1)  increases monotonically as M decreases (Fig. 3) because as M decreases

the heat transfer rate h1L

† 

D ˜ T  is constant but 

† 

˙ m  decreases, thus the heat transfer per unit mass

increases.  It can be shown that

† 

˜ T e(1) =1+ D ˜ T 1+
1

2M
Ê 
Ë 

ˆ 
¯ 
  (Da Æ •,H = 0,B Æ •) (16)

which is equivalent to the well-known result from the heat exchanger literature e  =

1/(1+(NTU)-1), where e is the effectiveness, for exchangers with no streamwise wall heat

conduction and equal 

† 

˙ m CP for the two streams.  Note that for M Æ ∞, there is no heat

recirculation, thus the reactor temperature 

† 

˜ T e(1)  approaches the adiabatic flame temperature for

cold reactants = 1+

† 

D ˜ T .

With substantial heat loss (Fig. 2, middle) the profiles are quite different; temperatures

are ambient except near the WSR (

† 

˜ x  = 1).  The WSR temperature 

† 

˜ T e(1)  is lower than for H = 0
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but because Da Æ ∞ was assumed, the combustion-induced temperature rise 

† 

˜ T e(1) -

† 

˜ T i(1)  is still

† 

D ˜ T .  This case should still be considered an excess enthalpy burner because reaction

temperatures are higher than adiabatic flame temperatures without recirculation, i.e., 

† 

˜ T e(1)  >

1+

† 

D ˜ T .  Figure 3 shows that 

† 

˜ T e(1)  asymptotes to a fixed value as M Æ 0 and does not decrease to

ambient because as M Æ 0, heat recirculation is balanced by heat loss; below a certain value of

M, decreasing M further (e.g. in an experiment by decreasing the mass flow rate or increasing the

length of the heat exchanger) has no effect other than to increase the fraction of the length of the

exchanger where both the reactant and product streams remain at near-ambient temperatures.  It

can be shown that the reactor temperature in the limit M Æ 0 is

† 

˜ T e(1) =
(1+ D ˜ T )a -1

a -1
;a ≡

1+ 2H + 4H (1+ H )
1+ 2H - 4H (1+ H )

  (Da Æ •,B Æ •,M Æ 0) (17)

This observation is extremely important to understanding the low-M extinction limits because it

indicates that, even in the presence of heat losses, without wall conduction there is no means to

reduce the reactor temperature as M is decreased.  This is quite different from combustors

without heat recirculation, where sufficient reduction in mass flow rate will nearly always lead to

extinction due to heat losses.

With substantial wall heat transfer (B ≠ 0) but adiabatic conditions (H  = 0) (Fig. 2,

bottom), the temperature profiles clearly show that wall conduction removes thermal energy

from the high-temperature gas near 

† 

˜ x  = 1 and returns energy to the gas at lower temperatures

(smaller 

† 

˜ x ).  Figure 3 shows that at small M  wall conduction dominates and the WSR

temperature 

† 

˜ T e(1)  is far below that for BÆ∞ (even though the system is still adiabatic) whereas

for large M wall heat transport is insignificant because gas-phase convection dominates wall

conduction.  The exit temperature 

† 

˜ T e(0)  is still 1+

† 

D ˜ T  because the system is adiabatic.  In the

limit M Æ 0, 

† 

˜ T e( ˜ x ) , 

† 

˜ T i( ˜ x )  and 

† 

˜ T w ( ˜ x )  (not shown) all take on the value of 1 + 

† 

D ˜ T  except very

near 

† 

˜ x  = 0, where 

† 

˜ T i( ˜ x )  Æ 1, and near 

† 

˜ x  = 1, where 

† 

˜ T e(1) Æ 1 + 2

† 

D ˜ T  (= 4 for the numerical

values employed in Fig. 3) due to heat recirculation caused by thermal conduction along the

wall.
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Results - finite-rate chemistry

Figure 4 shows the effect of mass flux on WSR temperature for Da = 107.  Without heat

recirculation the H = 0 curve would have the Z-shape typical of WSRs; with heat recirculation, at

small M (thus large 

† 

˜ T e(1)  and fast reaction) the upper branch follows the DaÆ∞ limit (Eq. (16)).

The lower branch is probably unstable as in conventional WSRs.  (For plotting clarity the lowest,

extinguished branch where 

† 

˜ T e(1)  ≈ 1 is not shown.)

For no wall conduction (BÆ∞), there are no solutions for sufficiently large M and two

solutions for all smaller M, even for non-adiabatic conditions.  Thus, without wall conduction

combustion is possible at arbitrarily small M (or Re).  In fact, the highest 

† 

˜ T e(1)  (thus highest

reaction rates and longest residence times, farthest from extinction) occur at the smallest M.  This

could be expected based on small-M behavior for DaÆ∞ (Fig. 3). Experiments [1-3] show that

small-M limits do indeed exist, indicating that an additional factor is required to model small-M

extinction limits.

In contrast, with wall conduction (finite B), the response curves become isolas with both

lower and upper limits on M because conduction of thermal energy away from the WSR vicinity

through the wall becomes significant at small M.  Once conducted away from the WSR vicinity,

some thermal energy is transferred back to the gas via convection and a portion of this energy is

then lost to ambient.  It is emphasized that this mechanism is important only at small M, where

wall conduction is competitive with gas-phase convection.  Figure 4 also shows that the large-M

extinction limit is extended slightly by wall conduction, since heat recirculation (thus WSR

temperature) is low at large M (Eq. 16), thus the increase in heat recirculation provided by wall

conduction increases the WSR temperature slightly.  This behavior is discussed in more detail in

the section on the conductive-tube burner analysis.

For non-adiabatic small-M cases, temperature profiles are similar to Fig. 2 (middle) in

which all heat generated is lost to ambient before the products reach the burner exit. Thus, simply

equating rates of heat generation and loss does not yield extinction criteria because all heat

generated can be lost to ambient rather than exhausted at the exchanger exit without extinction

occurring.  Jones et al. [7] predicted low-M  extinction limits because fixed heat loss was

assumed; at low M heat loss would exceed heat generation and extinction occurs.  In contrast,

heat loss is calculated systematically in this work.
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Figure 5 shows the effect of B and thus wall conduction on the reactor temperature 

† 

˜ T e(1)

for several fixed values of M.  The general C-shape of these curves is the same for all values of

M but the value of B at the turning point is a non-monotonic function of M.  The most robust

value of M, corresponding to the lowest value of B at the turning point, is about 0.1 as would be

expected from the isolas seen in Fig. 4.  As was seen in Fig. 3, the maximum (and minimum, on

the lower branch of solutions) values of 

† 

˜ T e(1)  occur at the lowest M.  As M increases, the curve

flattens until it disappears entirely at M ≈ 0.3.

Figure 6 shows the effect of M  on the minimum 

† 

D ˜ T  supporting combustion

(corresponding to the minimum fuel concentration, thus extinction limit). As in Fig. 4, without

wall conduction (BÆ∞) no small-M extinction limit exists.  For finite B, both small-M and large-

M limits exist.  Consistent with Fig. 4, the large-M limit is slightly extended by decreasing B

whereas the small-M limit is drastically narrowed by decreasing B.

It should be stressed that the value of B needed to affect extinction is much smaller than

that expected based on simplistic estimates.  The overall ratio of streamwise convection to wall

conduction is 

† 

˙ m CP/(kwt/L) = MB/2.  For the B = 10,000 curve in Fig. 6, extinction limits are

affected for all M ≤ 0.01, thus MB/2 ≤ 50.  Based on simplistic estimates, no effect wall

conduction effects would be expected unless MB/2 ≤ 1.  The powerful wall conduction effects

result from the large wall temperature gradients near the WSR when heat losses are present (Fig.

2, middle), which are much larger than the mean gradient under these conditions.

In Fig. 6, M is plotted on a logarithmic scale for clarity.  When plotted linearly the curve

is very steep on the small-M extinction branch but is much shallower on the large-M branch.

This trend is very similar to that seen in experiments [1-3].

Figure 7 shows the effect of M on the minimum value of B supporting combustion for

† 

D ˜ T  = 1.5.  The same trends as demonstrated above can be seen: both small-M and large-M

extinction limits exist for non-adiabatic conditions, the small-M limits are much narrower at

small B (and disappear as BÆ∞) and large-M limits are extended slightly by wall conduction.

Also, for the special case H = 0, B ≈ 9, as M is decreased conditions change from extinguished to

burning to extinguished and finally back to burning again.  This odd behavior results from

interactions of increasing conduction-free 

† 

˜ T e(1)  (Eq. 16), increasing wall conduction effects and

increasing residence time as M decreases.  In particular, as M decreases, the drop in temperature

leads to a small-M extinction limit, even for adiabatic cases, if the decrease in M decreases the
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right side of Eq. (15) (i.e., the reaction rate drops due to a drop in the reaction temperature 

† 

˜ T e(1) )

more than the decrease in M increases the reactor temperature.  Of course, since the minimum

† 

˜ T e(1)  for adiabatic conditions is 1 + 2

† 

D ˜ T , at sufficiently small M, the extinction limit will always

disappear for adiabatic conditions, meaning that there could be multiple extinction limits

changing only M.  Figure 7 (and additional calculations not shown) reveal that this behavior was

found only for narrow ranges of B and probably would not be experimentally observable.

Effect of boundary conditions

To test the effects of the assumption (Eqs. 7a and 7b) that the ends the dividing wall are

adiabatic, the opposite case of convection boundary conditions on the ends was examined.  At

the inlet end of the exchanger, the most natural choice would probably be to assume a heat loss

per unit area h2(Tw(0)-T∞) across the entire thickness t of the wall that balances the conductive

flux kw(dTw/dx)x=0.  This can be written as

† 

(a - HB*)c1 + (-a - HB*)c2 + (b - HB*)c3 + (-b - HB*)c4 = 0;  B* ≡ B t
2L

=
h1L
kw

(7a’)

where the additional geometrical parameter t/2L that did not appear as a separate parameter in

the analysis for adiabatic wall ends must now be specified.  Substitution of Eq. (7a’) for (7a) was

found to have negligible effect on the results except for the unrealistic case of t/2L near or larger

than unity.  This is because at low M, in the region near 

† 

˜ x  = 0, 

† 

˜ T w (0)  is near ambient temperature

because of heat loss at larger 

† 

˜ x  (See Fig. 2b) and thus no additional heat loss results from the

change in boundary condition, whereas at high M, heat losses are inconsequential even over the

much larger surface area of the exchanger itself.  For the WSR end of the exchanger, the most

natural choice would probably be to assume a heat transfer per unit area h1(

† 

T (1) -Tw(1)), where

† 

T (1)  = (Ti(1)+Te(1))/2 is the mean gas temperature seen by the wall end (see Fig. 1), across the

entire thickness t of the wall that balances the conductive flux kw(dTw/dx)

† 

˜ x =1.  This boundary

condition can be written as
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† 

(a + B*)eac1 + (-a + B*)e-ac2 + (b + B*)ebc3 + (-b + B*)e-bc4 = B*
˜ T i(1) + ˜ T e (1)

2
-1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ (7b’).

Figure 8 shows a comparison of predictions obtained using Eqs. (7a) and (7b) to those

obtained with (7a’) and (7b’).  It would be misleading to show results as a function of the new

geometrical parameter t/2L for fixed B and M since the only way to vary t/2L for fixed B and M

would be by varying the wall thermal conductivity kw according to kw ~ t-1, and varying kw alone

would have a drastic effect burner performance.  Consequently, results are shown for varying t

with all other dimensional parameters fixed, meaning that as t/2L is increased, B decreases

proportionally so that B* is fixed.  It can be seen in Fig. 8a that for B* = 1, which is representative

of our initial experiments [3, 22], there is practically no difference between the adiabatic and

convection boundary conditions, although another branch of solutions appears at very low B.

This branch is considered non-physical because, as Fig. 8b shows, it corresponds to large values

of t/2L (i.e., a heat exchanger that is nearly as large in the spanwise direction as it is in the

streamwise direction).  The current model does not include heat losses from the WSR end of the

burner that would become critical for this aspect ratio.  The high-B branch of solutions shown in

Fig. 8a was found to be almost independent of B* except for large values of t/2L.  These results

indicate that the choice of adiabatic wall ends is reasonable for the conditions where the current

model is asserted to be valid.

Combustors with conductive tube walls

Analysis

Experiments [9] have shown that by holding combustion on the end of a thermally-

conductive tube through which the reactants pass and are preheated by the tube wall, combustion

can be sustained under conditions (specifically tubes whose diameters are smaller than the

quenching distance) that could not sustain combustion without heat recirculation.  This

conductive-tube configuration provides an alternative to the counter-current or Swiss-roll heat

exchanger for recycling a portion of the heat release back to the reactants.  Thus, it is of interest
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to compare the performance of counter-current and conducting-tube heat-recirculating

combustors.

The configuration of Fig. 1 (lower) is employed in order to make the comparison of the

two types of heat recirculating combustors as valid as possible.  Heat transfer is divided into two

zones: the tube or channel wall and the gas.  The thermally-thin wall transports heat along its

length, transfers heat to/from the reactant stream with heat transfer coefficient h1, and loses heat

to ambient with coefficient h2.  In addition to streamwise convection, heat transport in the gas is

via convection to the wall.  A no-flux condition is imposed at the line of symmetry in the gas.

The configuration shown could be either a cylindrical tube or plane channel, the only difference

being the choice of Nusselt number for computing h1 (3.7 for the plane channel vs. 4.4 for the

tube [19]).

As with the counter-current configuration, ambient gas temperature and adiabatic wall

conditions are assumed at x = 0.  The adiabatic wall boundary condition cannot be applied at the

WSR end of the tube, otherwise there would be no heat transfer from the combustion zone to the

tube and thus no gas preheating would occur.  In general the boundary condition will depend on

the details of way in which the reaction zone is anchored to the end of the tube and would

involve additional length scales and/or heat transfer coefficients.  To avoid needing to specify

additional parameters, it is assumed that the WSR combustion is still described by Eq. (15) and is

followed by a short zone (short enough compared to the tube length L that heat losses can be

neglected) downstream of the WSR where heat is transferred to the wall (assumed isothermal

through the WSR and this downstream zone) until the gas and wall temperatures are equal.  The

thermal energy transferred from the gas to the wall is then conducted along the wall in the

upstream direction.  Clearly this boundary condition represents an upper bound on the

performance of the conducting-tube combustor since (1) the heat transfer from the burnt gas to

the tube wall does not diminish the WSR temperature, which would reduce the reaction rate and

(2) the maximum possible energy is transferred from the burnt gas to the tube wall and

subsequently recycled back to the gas upstream of the WSR.  In practice this boundary condition

would require a heat transfer coefficient in this downstream thermal equilibration zone much

higher than h1 since this zone is much shorter than L and thus has much less area available for

heat transfer to the gas.  (Alternatively this zone could have a much lower loss coefficient h2.)



17

Energy balances on the wall and the gas readily yield, using the same non-

dimensionalization as for the counter-current heat exchanger analysis,

† 

2
B

d2 ˜ T w
d˜ x 2

- (1+ H) ˜ T w = -( ˜ T i + H) (18)

† 

M d ˜ T i
d˜ x 

+ ˜ T i = ˜ T w (19)

which can be combined to obtain

† 

d3 ˜ T w
d˜ x 3

+
1
M

d2 ˜ T w
d˜ x 2

-
B(1+ H)

2
d ˜ T w
d˜ x 

-
BH
2M

˜ T w = -
BH
2M

(20)

The solution to (20) is

† 

˜ T w ( ˜ x ) =1+ c1e
a ˜ x + c2e

b ˜ x + c3e
d ˜ x (21)

where c1 – c3 are unknown constants and a, b and g are the roots of

† 

l3 +
1
M

l2 -
B(1+ H)

2
l -

BH
2M

= 0 (22).

One boundary condition is obtained by assuming the tube wall is adiabatic (thus has zero

temperature gradient) at the inlet end, thus

† 

ac1 + bc2 + gc3 = 0 (23)

In dimensional terms, the energy balance corresponding to the aforementioned wall boundary

condition at x = L is

† 

-kt
dTw

dx x= L

= ˙ m CP (Tw (L) - Te (L)) (24a).
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where for consistency with the counter-current exchanger analysis the notation Te(L) is used to

denote the dimensional WSR temperature.  By applying Eq. (21) at 

† 

˜ x  = 1, Eq. (24a) can be

written as

† 

M +
2a
B

Ê 

Ë 
Á 

ˆ 

¯ 
˜ eac1 + M +

2b
B

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ebc2 + M +

2g
B

Ê 

Ë 
Á 

ˆ 

¯ 
˜ egc3 = M( ˜ T e (1) -1)  (24b)

where the dimensionless WSR temperature 

† 

˜ T e (1)  is unknown.

Two additional relations are obtained by substituting (23) into (18) to obtain an

expression for 

† 

˜ T i( ˜ x )  and applying this expression at 

† 

˜ x  = 0 and 

† 

˜ x  = 1 to yield, respectively,

† 

1+ H -
2a2

B
Ê 

Ë 
Á 

ˆ 

¯ 
˜ c1 + 1+ H -

2b2

B
Ê 

Ë 
Á 

ˆ 

¯ 
˜ c2 + 1+ H -

2g2

B
Ê 

Ë 
Á 

ˆ 

¯ 
˜ c3 = 0  (25)

† 

1+ H -
2a2

B
Ê 

Ë 
Á 

ˆ 

¯ 
˜ eac1 + 1+ H -

2b2

B
Ê 

Ë 
Á 

ˆ 

¯ 
˜ ebc2 + 1+ H -

2g2

B
Ê 

Ë 
Á 

ˆ 

¯ 
˜ egc3 - ˜ T i(1) = -1 (26)

where the condition 

† 

˜ T i(0)  = 1 has been used in (25) and 

† 

˜ T i(1)  is unknown.

Results

Equations (15), (23), (24b), (25) and (26) represent 1 nonlinear equation and 4 linear

equations for the unknowns c1 – c3, 

† 

˜ T i(1)  and 

† 

˜ T e (1) .  In order to make the comparison between

the counter-current and conducting-tube heat-recirculating combustors as valid as possible, the

same representative reaction rate parameters Da = 107 and b = 70 and heat loss parameter H =

0.05 are employed in this section.  Nevertheless, the previous baseline heat release parameter

† 

D ˜ T  = 1.5 could not be employed because with these reaction rate, heat loss and heat release

parameters, there were no solutions to the governing equations for any value of Biot number B

except at extremely low values of mass flux M (<10-3).  Consequently, the baseline heat release
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parameter was increased 50% to 

† 

D ˜ T  = 2.25; at this value of 

† 

D ˜ T  the maximum values of M and

† 

˜ T e (1)  were similar for the two types of combustors.

Figure 9 shows the effect of mass flux M on WSR temperature for the conductive-tube

configuration (analogous to Fig. 4 for the counter-current configuration).  As with the counter-

current configuration, with heat loss these plots are isolas indicating maximum and minimum

values of M supporting combustion.  Unlike the counter-current combustor, however, decreasing

B substantially increases the maximum M because in the conductive-tube case heat conduction

along the wall (whose effect is proportional to 1/B) is the only means to accomplish heat

recirculation.  Significantly, however, is that the isolas for different values of B are nearly

concentric in the counter-current case but are displaced to lower M  as B increases for the

conductive-tube case.  This indicates that for both counter-current and conductive-tube cases,

increases wall heat conduction (i.e. lower B) raises the minimum value of M  supporting

combustion.  Figure 10 illustrates why wall heat conduction, which is essential for heat

recirculation in the conductive-tube configuration, still reduces low-M performance.  At higher

values of B, thus lower kw (Fig. 10, upper), the wall temperature decreases to ambient on a scale

smaller than the heat exchanger length whereas at lower B, thus higher kw (Fig. 10, lower), the

entire wall is essentially isothermal at a temperature above ambient.  In the latter case the system

loses more heat to ambient than at higher B without a corresponding benefit of increased heat

recirculation, thus making the system more susceptible to extinguishment by heat losses.  Of

course if B is too large, the temperature difference between the gas and the wall increases

(because of the increased difficulty in transferring heat along the wall) which in turn decreases

the amount of heat recirculation and leads to an upper limit on B.

Figure 11 shows the effect of M on the minimum 

† 

D ˜ T  supporting combustion for the

conductive-tube configuration (analogous to Fig. 6 for the counter-current configuration). As

with the counter-current configuration, without wall conduction (BÆ∞) no small-M extinction

limit exists and for finite B, both small-M and large-M limits exist.  In contrast to the counter-

current combustor, however, B has a substantial effect on the high-M extinction limit for the

conductive-tube configuration for the reason discussed in the previous paragraph.  The curves in

Fig. 11 show a change in slope to a smaller value for small M corresponding to the condition

where heat losses are so severe that the entire heat exchanger is essentially at ambient

temperature and no heat recirculation occurs.  In this case the WSR operates with ambient inlet
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temperature (

† 

˜ T i(1)  = 1) and the performance of the system can be described by Eq. (15) only.

This behavior also occurs in a similar manner for the counter-current combustor but is not seen

in Fig. 6 because it occurs at the same values of 

† 

D ˜ T  as for the conductive-tube combustor, which

is well off the scale of Fig. 6.

A comparison of Figs. 6 and 11 shows that the inherent performance of counter-current

burners is superior to that of conductive-tube burners having the same reaction rate and heat loss

parameters.  In particular, when B is considered to be a design parameter that can be optimized

independently for the two configurations, for all M  the minimum 

† 

D ˜ T  required to sustain

combustion is lower for counter-current burners.  For example, at M = 0.1 the minimum 

† 

D ˜ T  is

about 1.25 for the counter-current burner and 2.15 for the conductive-tube burner and at M =

0.01 the respective values are about 1.0 and 1.9.  This difference is particularly noteworthy since

the wall boundary condition at the WSR is perhaps the most favorable possible for combustor

performance.   The better performance of the counter-current burner is fundamentally due to the

fact that there is less heat loss penalty for heat recirculation in this case.  Specifically, as

discussed in the counter-current analysis, wall thermal conduction leads to lower WSR

temperatures when heat losses are present.  In the conductive-tube case this wall conduction is

the only mechanism for heat recirculation and thus must be present. In contrast, for the counter-

current case heat recirculation can be accomplished without wall thermal conduction, thereby

more effectively decoupling heat loss from heat recirculation.

Application to microscale devices

Well-instrumented macroscale experiments are valuable tools for predicting microscale

performance by invoking similitude (constant dimensionless parameters) since microscale

devices are notoriously difficult to instrument.  The analysis presented here may be useful for

this purpose.  For geometrically similar devices (d ~ L ~ w ~ tw) with laminar flow (h ~ 1/d) it is

easily shown that M ~ Ud/ag, B  ~ kg/kw,, Da ~ d2Z/ag and H = constant, where ag is the gas

thermal diffusivity.  The biggest challenge is to maintain constant M and Da simultaneously as d

decreases.  This would require (since ag ~ P -1, where P is the pressure) P ~ d -2 and U  ~ d.

Changing pressure is problematic, however, since the overall reaction rate parameters Z and E

are generally pressure-dependent.  If pressure is fixed then geometrical similarity cannot be



21

maintained.  Similitude could be maintained with U = constant, L ~ d3, w ~ d and tw ~ d5, but

because of manufacturing limitations this is not practical for large ranges of d.  Perhaps the most

viable scaling approach, is to employ geometrical similarity, constant pressure, U ~ d-1 (thus

constant M and Re) and to maintain reaction rate similarity increase the fuel concentration 

† 

D ˜ T 

such that the right-hand side of Eq. (15) is constant even though Da decreases with decreasing d.

For example, for the counter-current combustor with fixed M = 0.01, B = 104, H = 0.05, b = 70

and initial values 

† 

D ˜ T  = 1.1 and Da = 107, as d is decreased from its nominal value (do) the

required 

† 

D ˜ T  are well fit by the relation 

† 

D ˜ T  = 1.07+0.03(d/do)
-2.  The temperature profiles are

nearly identical for these values of 

† 

D ˜ T .  Note that according to this expression 

† 

D ˜ T  rises rapidly

as the scale (d) decreases.  This point is of particular interest for microscale combustion

applications, where it may not be of special value to burn very lean mixtures or fuels with very

low heating value but heat losses will be extremely problematic even for near-stoichiometric

mixtures due to the enormous surface area to volume ratios associated with microscale devices.

Discussion and conclusions

A simple model of heat-recirculating burners was developed, including heat transfer from

product to reactant streams in a counter-current heat exchanger, heat loss from both streams to

ambient, thermal conduction along the dividing wall between the two streams and chemical

reaction in a well-stirred reactor.  The predicted effects of non-dimensional heat loss (H) and fuel

concentration (

† 

D ˜ T ) are found to be straightforward.  (The effects of Damköhler number (Da)

and activation energy (b), not shown in this paper, also follow the expected trends.)  In contrast,

the effects of mass flux (M) and Biot number (B) are neither straightforward nor even monotonic.

In particular, extinction limits are predicted at both large M (due to blow-off type limits well

known for WSRs [21]) and small M (due to heat losses which are not important for the large-M

limit).  Most significantly, the small-M extinction limit occurs only with wall conduction (finite

B) because without this damping factor, as M decreases the amount of heat recirculated (relative

to heat generation) increases without bound.  The importance of wall conduction cannot be

overstressed since without wall conduction (infinite B), even with low reactivity fuels (low Da or

† 

D ˜ T ) or large heat losses no small-M limit exists.  This is because as M decreases, heat

recirculation increases (causing higher WSR temperatures and reaction rates) and WSR
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residence times increase; at sufficiently low M this combination is always capable of overcoming

losses.  With wall conduction, some thermal energy is transferred away from the WSR region,

re-deposited into the gas, then lost to ambient, which leads to small-M limits.  It is emphasized

that wall conduction is not a heat loss mechanism, instead it re-distributes thermal energy within

the device.  In the current model for the counter-current exchanger only gas-phase thermal

energy can be lost to ambient.

It should also be noted that in a spiral heat exchanger where (unlike the linear exchanger

modeled here) the view factor of the dividing wall with itself is non-zero, the radiative heat

transfer between walls would have a similar effect to streamwise wall conduction since this type

of radiative transfer would also increase heat transfer within the solid phase without a

corresponding increase in heat exchange with the gas.  We have observed preliminary evidence

of this in detailed numerical computations of Swiss Roll combustor performance [23] – the peak

temperature in the combustor decreases when radiative transfer is included.  Of course, if the

gases were sufficiently absorbing, radiation could increase heat exchange with the gas and thus

increase combustor temperatures, but the typical Planck mean absorption length of combustion

products (1 – 2 m) far exceeds channel dimensions of laboratory-scale or microscale apparatuses

and thus significant participation from gas-phase radiation would not be expected.

While streamwise wall conduction dominates burner performance, with the thermally-

thin wall model employed here spanwise conduction (across the wall) results in no temperature

gradients and thus does not affect performance.  This is considered realistic since for practical

burner materials and dimensions, wall thermal resistance is much lower than gas-phase thermal

resistance (see Counter-current combustor – Approach).

An alternative configuration of combustion stabilized at the exit of a tube, where heat

recirculation occurs via conduction through tube wall was also analyzed.  Although this

configuration certainly qualifies as a heat-recirculating combustor, its performance was found to

be inferior to that of the counter-current configuration in that much higher dimensionless fuel

concentrations are required to sustain combustion at the same M.

It is believed that the conclusions of this study, while based on highly simplified transport

and chemistry sub-models, are applicable to real devices also, particularly regarding effects of

wall conduction.  Similar trends would be expected with complex chemistry if the overall

activation energy is large.  Using constant overall heat transfer coefficients is reasonable for
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laminar flow, though for turbulent flow at high Re, roughly h1 ~ 

† 

˙ m , thus M ≈ constant (though

the Damköhler number Da is proportional to h1
-1 and would decrease with increasing 

† 

˙ m , thus

leading to extinction limits at large M even for turbulent flow.)  Also, linear and spiral heat

exchangers will have different H  but probably similar response to heat loss.  The WSR

combustion model is considered reasonable although approximate since all diffusive transport

within the WSR is neglected.  Moreover, catalytic combustion is advantageous for small-M heat

recirculating burners [3, 5].  If catalyst is present only in the WSR volume, the WSR model is

likely reasonable for catalytic combustion at small M  where residence times are long and

reaction is kinetically limited (rather than potentially transport limited as at large M).
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Nomenclature

AR WSR area (replaces WSR volume in three-dimensional problems)
a See Eqs. (5), (22)
B Scaled Biot number = 2h1L

2/kwt
b See Eqs. (5), (22)
c Integration constants (Eq. 5)
Cp Heat capacity at constant pressure
Da Damköhler number = rgCPARZ/Lh1

d Channel height
dH Hydraulic diameter
E Activation energy
H Dimensionless heat loss coefficient = h2/h1

g See Eq. (22)
h1 Heat transfer coefficient to divider wall
h2 Heat loss coefficient to ambient
k Thermal conductivity
L Heat exchanger length
M Dimensionless mass flux  = 

† 

˙ m CP/h1L

† 

˙ m Mass flow rate per unit depth
NTU Number of Transfer Units
Nu Nusselt number = h1d/kg

Pr Prandtl number ≡ mgCP/kg

R Gas constant
Re Reynolds number = 

† 

˙ m d/µ
T Temperature
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† 

˜ T Dimensionless temperature = T/T∞

U bulk flow velocity
WSR Well-stirred reactor
w Channel depth
x Streamwise coordinate

† 

˜ x Dimensionless streamwise coordinate = x/L
Z Pre-exponential factor in reaction rate expression

b Non-dimensional activation energy (Zeldovich number) = E/RT∞

† 

D ˜ T Temperature rise for adiabatic complete combustion
e Heat exchanger effectiveness
µ Dynamic viscosity
r density
t Dividing wall thickness

Subscripts

e product side of heat exchanger
g gas
i reactant side of heat exchanger
w dividing wall
∞ ambient conditions
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Figure Captions

Figure 1.  Schematic diagram of heat exchanger / combustor configurations analyzed.  Upper:

counter-current system; lower; conductive tube.

Figure 2.  Temperature profiles in the counter-current heat exchanger for Da = ∞, M = 0.2, 

† 

D ˜ T  =

1.5.  Top: H = 0, B = ∞; middle: H = 1, B = ∞; bottom: H = 0, B = 10.

Figure 3.  Effect of mass flux on WSR temperature in the counter-current combustor for infinite

reaction rates (DaÆ∞) with 

† 

D ˜ T  = 1.5.

Figure 4.  Effect of mass flux on WSR temperature in the counter-current combustor for finite

reaction rates (Da = 107) with 

† 

D ˜ T  = 1.5.  For reference, the adiabatic, conduction-free infinite-

rate curve from Fig. 3 is also shown.

Figure 5.   Effect of Biot number (B) on WSR temperature in the counter-current combustor for

finite reaction rates (Da = 107) with H = 1.5 and 

† 

D ˜ T  = 1.5, for several fixed values of the mass

flux M.

Figure 6.  Effect of mass flux on fuel concentration (expressed as 

† 

D ˜ T ) at the extinction limit in

the counter-current combustor for varying values of the Biot number (B). Da = 107, H = 0.05.

Figure 7.  Effect of mass flux on Biot number (B) at the extinction limit in the counter-current

combustor for varying values of the heat loss coefficient (H). Da = 107, 

† 

D ˜ T  = 1.5.

Figure 8.  Effect of the boundary condition on the heat exchanger dividing wall on the predicted

extinction limits of the counter-current combustor.  (a):  Comparison of convection boundary

conditions (for B* = 1) to adiabatic walls in Biot number (B) – mass flux (M) space.  (b):  same

results plotted in terms of limit mass flux (M) as a function of wall thickness (t/2L).

Figure 9.  Effect of mass flux on WSR temperature in the conductive-tube combustor for finite

reaction rates (Da = 107, b = 70) with 

† 

D ˜ T  = 2.25.  Also shown for reference is the case for
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infinite reaction rate Da = ∞ without heat loss (H = 0) or wall conduction (B = ∞).  For the finite-

Da case without wall conduction the values of mass flux M have been multiplied by 1000.

Figure 10.  Temperature profiles in the conductive-tube combustor for Da = 107, M = 0.06, 

† 

D ˜ T  =

2.25, H = 0.05.  Top: B = 10; bottom: H = 0, B = 100.

Figure 11.  Effect of mass flux on fuel concentration (expressed as the temperature rise for

adiabatic complete combustion, 

† 

D ˜ T ) at the extinction limit in the conductive-tube combustor for

varying values of the Biot number (B). Da = 107, H = 0.05.
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Figure 1.  Schematic diagram of heat exchanger / combustor configurations analyzed.  Upper:

counter-current system; lower; conductive tube.
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Figure 2.  Temperature profiles in the counter-current heat exchanger for Da = ∞, M = 0.2, 
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